CTA 報告47: CTA 大口径望遠鏡用分割鏡の開発: LST Mirror System

手嶋政廣^{A, B}, R.Krobot^C, 中嶋大輔^A, 馬場浩則^D, 加賀谷美佳^D, 片桐 秀明^D, 峪中良介^E, 周小溪^E, 千川道幸^E, 野里明香^E, 柳田昭平^D, 山本 常夏^F, 吉田龍生^D, 他CTA-Japan Consortium

東大宇宙線研^A, Max-Planck-Inst. fuer Phys.^B, Univ. of Erlangen^C, 茨城大理^D, 近畿大理^E, 甲南大理工^F

Specifications/Requirements of LST

- Diameter: 23m
- Dish area: 407 m²
- F/D = 1.2, F=28m
- Dish profile: Parabolic
- Permanent Active Mirror Control
- FOV = 4.5 degrees, Pixel size = 0.1 degrees (1855ch camera)
- Fast rotation: <180 deg/20 sec
- Dish profile: parabolic
 isochronicity: <0.6
 ns RMS
- Solution State State
- Camera oscillation in wind gust: <8mm
 - ➔ Active oscillation damping by LAPP IN2P3

Designed by MPI Munich and MERO

Deformation of mirror dish

Optical axis and permanent AMC (Active Mirror Control)

- Define optical axis with the IR Laser beams
- High precision inclinometer (a few arcsec) → zenith angle
- HR CCD camera at the center of dish to monitor the optical axis and star field
 pointing direction in sky
- (Camera LED position) (Optical axis Laser position) → camera sag
- (Mirror Laser positions) (Optical axis Laser position) -> misalignments of mirror directions

Mirrors and Actuators on Triangular cta cherenkov telescope array space frame Triangular Space frame Actuators (2 axis free) **Universal Joints** Actuators (1 axis free

LST-Mirrors: 1.5m (flat-flat) Hex shape 2m² area

MST-Mirrors: 1.2m (flat-flat) Hex shape

Mirror mounting scheme

Pads rear side of mirrors Interface with AMC

Telescope Parameters	Values	Comments
Layout	Parabolic	Intermediate solution between
		Parabolic and DC may be better
Diameter of dish	23m	Consists of 198 segmented mirrors
Focal Length	28.0 m	
Pixel size of camera	50.0 mm	Corresponding 0.1 degrees
Total reflectance	> 85% btw. 300-600nm	
PSF	R80 = 1/3 pixel (17mm)	Radius contains 80% of light
Segmented mirror	Values	Comments
parameters		
Shape	1.51m flat to flat hex.	Pitch of space frame knots is 1.54m
Area	1.98m ²	
Weight	< 40kg	Corresponding to 20kg/m ²
Surface shape	Spherical	
Thickness	< 80mm	
Focal length	28.0 - 28.4 m	Optimized with ray trace
Reflectance	>85% btw. 300-600nm	
PSF	R80 = 1/5 pixel (10mm)	Radius contains 80% of light
Survival temp.	-25°C ~ +60°C	
Operational temp.	-10°C ~ +30°C	
Rear surface	Flat preferred	
Flanges (interface to	Three flanges at 600mm	Drawing is shown in Fig 5.1.4
actuators)	from the center	
Life time	> 10 years	Annual degradation of the
		reflectance should be < 2 %/yr

Specifications for LST Mirrors

Upgrade of Sputtering Chamber of $2.8m\Phi \times 9 \text{ m}$ at Sanko

92% of reflectivity

Multi (5 or 7) layer coating: Cr + Al + SiO2 + HfO2 + SiO2 (+HfO2 + SiO2)

In total it takes < 3hrs of process

Scratching tests for vapor and sputtering coats

Stylus R = 25 μm Amp. of Osc. = 100μm Scratch speed 10μm Acc. of Force 50mN/60sec

Conclusion: Sputtering coat is about 3-4 times stronger than vapor coat

Al+MgF2 coat

Sputtering CR+Al+SiO2+HfO2+SiO2

Cold slump for LST mirrors Hot slump for MST mirrors

Milling of Al-Honeycomb surface

Mold R=56.0m after machining

1510mm LST mirror Prototypes 2.7mm glass+60mm AL.Honeycomb+2.7mm Glass

D80 ~ 24mm at 2f

F2F:1.51m Area:2m² R of Curvature: 57m PSF: <0.02° Weight: 45kg

D80 = 24mm at 2f (by Hironori Baba)

Sanko Mirror #02 measurements at Erlangen

Summary

- New prototype mirrors for LST and MST are produced by Sanko
 - New process, and new honeycomb(3/8")
 - The PSF is now enough small
 - The sputtering coat shows >92% reflectivity at 350nm.
 - Scratch test was done for the sputtering coat. It is 3-4 times stronger than the vapor coat of MgF2
- PSF is measured with LWD method by Erlangen group
 - Sanko M#01, D80 = 8.15mm
 - Sanko M#02, D80 = 10.80mm (~12mm by H. Baba)
 - PMD instrument is installed at ICRR, U-Tokyo → Next talk by Mr. Baba
- Development and production of AMCs are expected by CTA-Japan
- We are planning the mass production of 220 LST mirrors in 2012 2016 at Sanko.