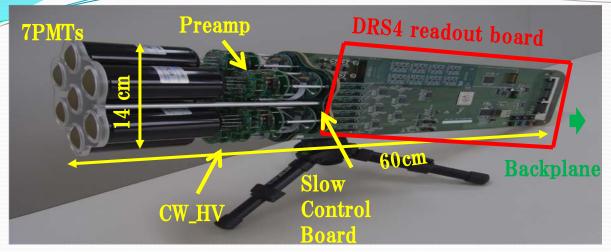
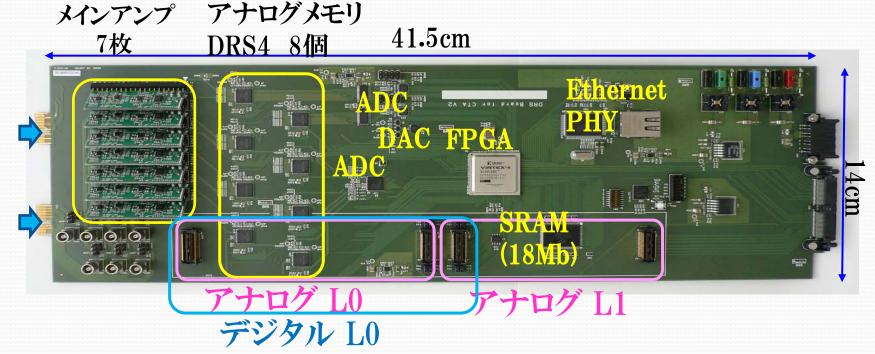
CTA報告25:CTA大口径望遠鏡 読み出し回路の開発

萩原亮太,郡司修一,青野正裕 A,粟根悠介 A,梅原克典 B,榎本良治 C, 大岡秀行 C,奥村曉 D,折戸玲子 E,片桐秀明 B,株木重人 F,窪秀利 A, 今野裕介 A,佐々木美佳 B,渋谷明神 G,田島宏康 G,田中真伸 H, 手嶋政廣 C,I,中森健之 J,日高直哉 G,米谷光生 K,他CTA-Japan Consortium, 池野正弘 H,内田智久 H,他 オープンソースコンソーシアム(Open-It)


山形大理,京大理 A,茨城大理 B,東大宇宙線研 C,宇宙研 D,徳島大総 E, 東海大医 F,名大STE研 G,KEK素核研 H,Max-Planck-Inst. fuer Phys. I, 早大理工 J,広大理 K

要求されるエレクトロニクスの仕様


- **✓3000倍**ものダイナミックレンジが必要(1p.e.~3000p.e.)
- ✓ 夜光が1PMT当たり~100MHzで入ってくる事を考えれば、 隣接するPMTで数nsec程度のコインシデンスを取る必要 がある。PMTからは2.5nsec幅の信号が出力されるため、 帯域幅として300MHz以上が必要。
- ✓ 複雑なトリガー条件が必要であり、トリガー判定に時間がかかる。一方10kHz程度のレートでトリガーが入ってくるため、データを一時的にメモリーに蓄え、トリガー信号によりそのデータを効率よく取り出す事が必要。
- ✓1台の望遠鏡で2500本程度のPMTを使用している。エレクトロニクスの低消費電力化が必要。

今までにない超高速で低消費電力のエレクトロニクスが必要であるため、 幾つかの大学で役割分担して、回路の開発や試験を行っている。

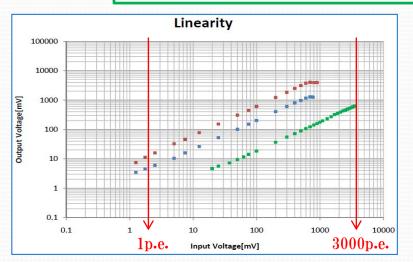
エレクトロニクスの概要

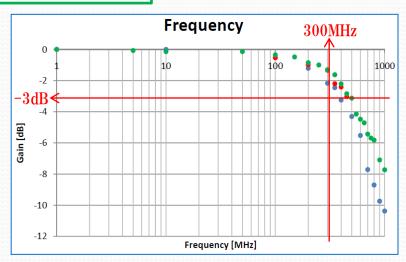
7本のPMTに一枚の大きな 基板が取り付けられている。

7-PMT クラスター側

フロントエンド回路

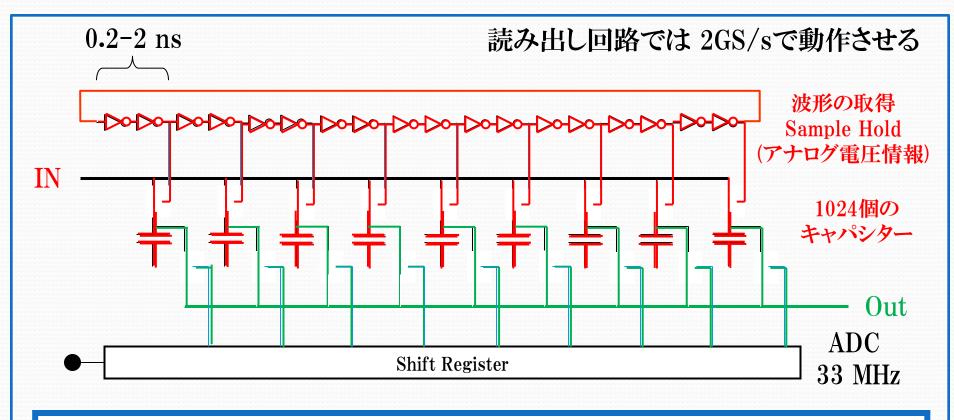
要求


- ✓ダイナミックレンジ:3000 (1p.e.~3000p.e.)
- ✓帯域幅(-3dB):>300MHz
- ✓低消費電力


帯域幅 $LOW_GAIN(\times 1/4)$ 減衰 500MHz $\times 1/4$ 差動 ADA4950 $HIGH_GAIN(\times 10)$ Input 400MHz Single end **ADA4927** TRIGGER($\times 4$) >300MHz 供給電圧:±3.3V **ADA4950**

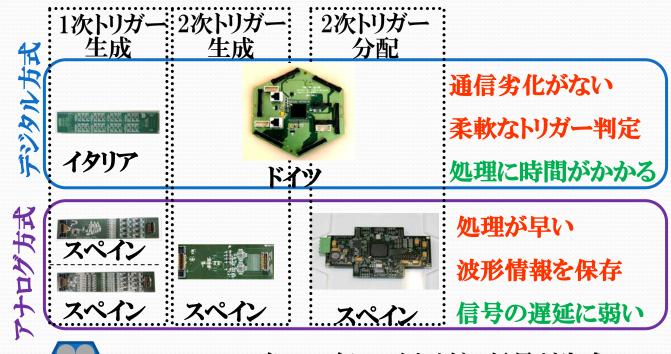
PMT 1 unit / card

430mW/card



アナログメモリサンプリング

- ✓ DRS4(Domino Ring Sampler)
 - Switched Capacitor Array O ASIC
 - スイスPSIが開発


GHzで波形取得しMHzでデジタル変換できる

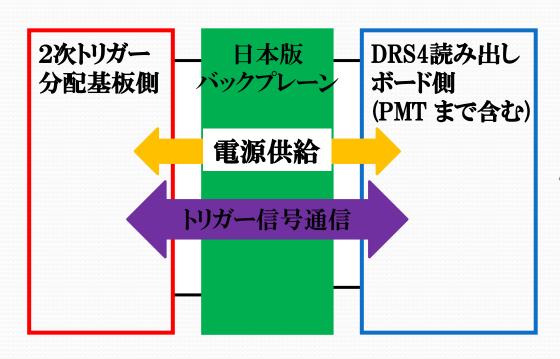
デジタルトリガーとアナログトリガー

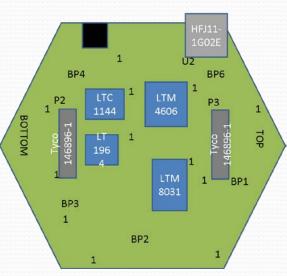
ドリガー生成回路

✓海外グループにより複数のカードが開発されている。

✓日本グループは全てのカードをテストするためのプラットフォームを作り上げており、順次性能評価を進める予定である。

各PMT毎の1次トリガー信号が生成


隣接するクラスターに転送、2次トリガーの判定


2次トリガーを生成して、さらに大きい単位で処理

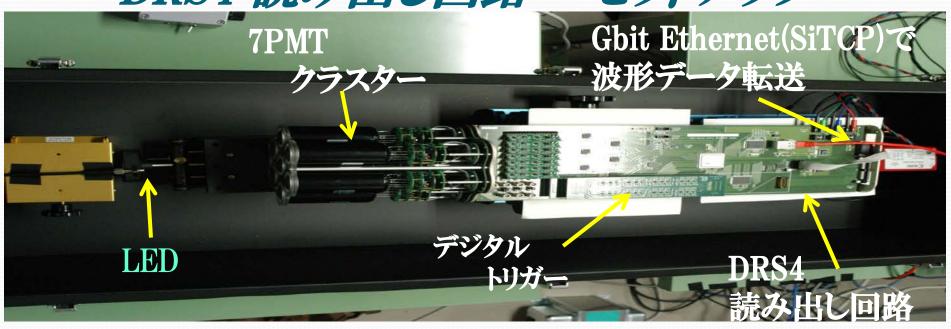
日本版バックプレーン

日本版バックプレーン

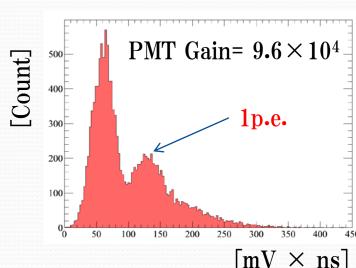
- ✓ 2次トリガー分配基板と読み出し回路との間を通信
- ✓ 読み出し回路、トリガー基板、PMTに電源を供給する
- ✓ 現在開発中

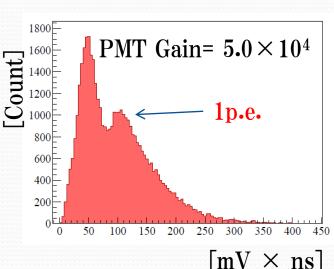
日本版バックプレーン基板 フロアプラン

エレクトロニクス仕様のまとめ

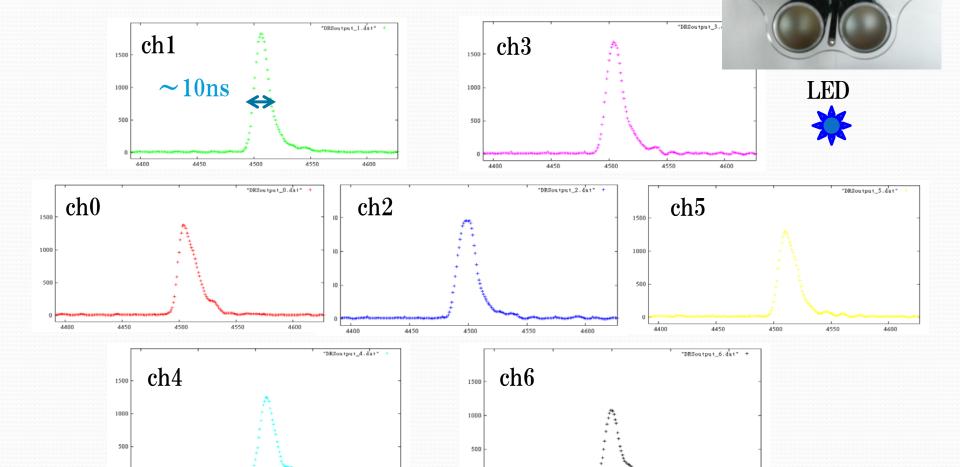

要求仕樣

- ✓3000倍のダイナミックレンジ
 - -1p.e.~3000p.e.の範囲をカバーできている
- ✓帯域幅(-3dB):>300MHz
 - -300MHz以上を満たしている
- ✓トリガーの試験状況
 - -これから読み出し回路を使っての統合試験
- ✓消費電力(要求:~2W/ch)
 - -1.9~2.0W/ch(アナログトリガー使用)
 - -2.2W/ch(デジタルトリガー使用)


超高速で低消費電力のエレクトロニクスが完成しつつある


7PMTクラスター + スローコントロールボード+ DRS4 読み出し回路 -セットアップ-

1p.e. スペクトル


lp.e.の信号が 見えている。

7PMTクラスターの読み出し

✓PMT Gain=5×10⁴ ✓LEDの光は均一には当たっていない ✓2GS/sで取得

まとめと今後の開発予定

まとめ

- ✓ CTAの読み出し回路を開発(アナログメモリサンプリング方式)
- ✓ エレクトロニクスの消費電力は要求に近づいている
- ✓ PMTのゲイン5×10⁴で1p.e.の取得に成功
- ✓ CTA全体で初の7PMTクラスターで波形取得に成功(2GS/s)

今後の開発予定

- ✓ 読み出し回路の改良(量産・実際の運用を視野に)
- ✓ トリガーシステムを組み込んで試験
- ✓ ミニカメラの制作
 - 3クラスターで構成(PMT7本×3)
 - バックプレーンを使い隣接クラスターとのトリガー情報のやり取り