CTA-LST MIRROR 開発

M.Teshima、他CTA-Japan コンソーシアム Max-Planck-Institute for Physics

CTA LST: 23m Large size telescope design Space frame with carbon fiber tubes

MERO beams connections

We need 200 units of 1.5m Hex mirrors / Telescope

1600 Units in total

Mirrors and Actuators on Triangular space frame

CTA Mirror Production Technique

1.5m, 1.2m size mirrors for LST, MST

Figure 39: Various mirror types under consideration for CTA: top: Diamond-milled aluminium honeycomb mirrors. middle left: Cold slumped glass-foam sandwich mirrors. middle right: Open fibre-reinforced plastics mirror (carbon fibre or glass fibre). lower left: Carbon-fibre composite mirror with CFRP honeycomb. lower right: Carbon-fibre composite mirror produced with SMC technology.

Experience in M-I, M-II Long lifetime Expensive ~3KEuro/m2

Experience in M-II Cheap ~1.5KEuro/m2

Sanko – ICRR: Our past cooperation

600mm flat-flat Hex shape mirrors are produced for Utah Seven TA, TA

200 mirrors for Utah seven TA, 500 mirrors for TA (too good for TA)

Recent large size mirror productions by Sanko

2.0m x 1.8 m spherical mirrors

For the process of LCD Panels

Chamber for spattering coating up to 2.00 x 2.20m mirrors

Chamber and Spattering machine

CTA

Considering AI, SiO2, HfO2 spatterings in this chamber

Requirements for LST mirrors

- Hex shape spherical mirror of 2m²
 - Hex shape 1510mm face to face
- Focal Length ~ (D/23m) x (F/1.2) = 27.6 (FxD) m
 - Radius of curvature ~ 55,200 mm
 - Sag at the center of mirror ~5.16 \pm 0.05 mm
- Spot size <0.03 degrees ~ 17mm
- Aging ~10yrs
 - possibly multi-layer coating with spattering method
 - Possible solution: SiO2 + HfO2 coating
- Light Weight
 - <20kg/m² ~ 0.3g/cc (float on water !!)
- Target cost ~ 3000 Euro / 2m²
- Possible structure/production solutions
 - Replica method with cold slump technique (glass + Al honeycomb + glass)
 - Diamond milling with all aluminum structure (AI + AI honeycomb + AI)

Sanko tried cold slump technique

Milling of Al-Honevcomb surface

Mold R=55.2m after machining

50cm x 50cm prototype mirror (R = 30m) at Sanko 3mm Glass + 60mm Al-honeycomb + 3mm Glass Al-Nd, SiO2 coating

The reflected image near the R

Prototype Mirrors with Cold Slump Technique

The prototype mirrors of 50x50cm, R=30m were successful made
Image of Sun looks nice
Reflectivity of 92% is OK
Two mirrors were delivered to MPI, ICRR for the optical quality tests (PSF, Temperature cycle, etc.)

SiO2+HfO2+SiO2 multicoat

New coating developed for HESS re-coating
Longer life time than simple SiO2 coating
High Reflectivity 95%

MPIK group

CTAS Critical Paths

Prototyping LST, MST mirrors • Size1.5m Hex, R=55.2m, f = 27.6m • Size 1.2m Hex, R=32m, f = 16m

- Series of Production
 - Check stability and reproducibility (~20 Units)
- Critical tests
 - Test in temperature cycle (acceleration test)
- Coating for long life
 - Spattering Machine for SiO2, HfO2 multi-coat
 - Measure life time at the sites
- Other technical issues
 - Inexpensive Glues
 - Water sealing, Field test